VTRC Work Zone Safety and Queue Management Research

Michael D. Fontaine, P.E., Ph.D.
Associate Director
Safety, Operations, and Traffic Engineering
Virginia Work Zone Safety

- Nationally:
 - 1 work zone fatality every 15 hours
 - 1 work zone injury every 15 minutes
 - 4 of 5 fatalities are drivers

- In 2017, VA work zones had:
 - 2,666 crashes (+9.8%)
 - 1,329 injuries (+12.7%)
 - 12 fatalities
How Do Work Zones Affect Safety?

- VTRC worked on NCHRP 17-61 to identify safety effects and crash countermeasures
- National sample of work zones on freeways/interstates/multi-lane highways
 - NC, VA, OH, TX, UT, WA
 - 8200 mi-months, 7600+ crashes
- Looked at a range of lane closure, lane width, shoulder width, and positive protection conditions
4-Lane Freeways/Interstates

![Graph showing predicted crashes per mile per year vs. AADT (veh/day)]
6-Lane Freeways/Interstates

- 17-61, Work Zone
- 17-61, Normal
- HSM, Urban
- HSM, Rural
Crash Increases in Work Zones

- **4-lane**
- **6-lane**

AADT (Average Annual Daily Traffic)
Congestion Effects of Work Zones

- Work zones were responsible for about 4% of VA Interstate delay in 2016 vs. 7% in 2017
Work Zone
Congestion and Safety

• A 2-yr study of Virginia work zone crashes found that:
 – about 58% of crashes were rear ends
 – Over 76% of rear ends were because of congestion
Smart Work Zones

• VDOT deployed pilot tests of 2 Smart Work Zones in 2017:
 – I-95 SB in Emporia, VA
 – I-95 SB in Fredericksburg
• Installed a number of trailer/post mounted radar sensors to measure traffic speeds
• Queue warning messages were triggered on DMSs when speeds dropped below 40 mph
Long Term Construction

Major Findings

• Systems generally detected congestion appropriately

• Crash frequency impacts:
 – Emporia: crashes during activation were similar to pre-construction crash frequency
 – Fredericksburg: Crashes declined from 7.2 rear ends per month pre-construction to 4.7 per month (-35%)

• System cost ~ $10k per month
Staunton Queue Management Teams

- Two pickup trucks with PCMS and warning lights, cell phones, and radio communications (to the other truck and to TOC)
- Leap-frog operations
 - Truck-1 (Active): 2000 feet from the end-of-queue/taper
 - Display: ROAD WORK AHEAD / SLOW or STOP TRAFFIC
 - Truck-2 (Transitory): 0.5 miles from the end-of-queue/taper
 - Display: ROAD WORK AHEAD / SLOW TRAFFIC AHEAD
 - As the queue reaches Truck-1
 - Truck-1 will re-position itself to 0.5 mile from the end-of-queue
 - Truck-2 becomes Active
 - They will switch their roles
Queue Management in Work Zones

- Staunton District has been using a queue management team (QMT)
 - Appear to be effective in 2 paving projects during 2017 on I-81
 - No fatal crashes when using QMT
 - No high speed rear-end crashes

- VTRC is comparing QMT and smart work zone solutions to no queue management on several I-81 paving jobs
Portable Smart Work Zone

AUTOMATED QUEUE WARNING (AQW) SYSTEM
TYPE 1 Layout (Typical)
Intelligent Portable Changeable Message Sign
PCMS w/Sensor & Modem (3.0-3.5 mi b4 WZ)

AUTOMATED QUEUE WARNING SYSTEM
EQUIPMENT
- 4 Portable Speed-Mac Sensors
- 1 Intelligent PCMS + Doppler

SYSTEM
- Web-Based Remote Queue Warning Server

Portable Traffic Sensors (Speed-Mac)(Qty = 4)
0.1, 0.5, (1.0-1.5) & (2.0-2.5) before Taper

SYSTEM LOGIC:
APPROACH SPEEDS AT SENSOR(S)
SLOW TRAFFIC: Avg Speeds < 45 mph
- CAUTION SLOW TRAFFIC - X MILES AHEAD
STOPPED TRAFFIC: Avg Speeds < 20 mph
- CAUTION STOPPED TRAFFIC - X MILES AHEAD

APPROACH SPEEDS AT PCMS
FREE FLOW:
WORKZONE 3 MILES AHEAD

MAX QUEUE ALERT: Avg Speeds <45 mph
- Send Auto Alert via Email to Project Personnel
- Consider moving PCMS further upstream
- Consider adding another Sensor upstream
(spaced approximately 1.0 mile +/-)

NOTE: Only use on roads with <= 3 lanes
PM8L: PQMS location
PM8L: PQMS configuration

<table>
<thead>
<tr>
<th>PCMS</th>
<th>I-81</th>
<th>NB</th>
<th>172.4</th>
<th>(172.35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCMS 3 (4.55mi b4 Taper)</td>
<td>DEFAULT</td>
<td>SLOW</td>
<td>STOP</td>
<td>Queue warning Sensors (Closest non Fr)</td>
</tr>
<tr>
<td></td>
<td>WORKZONE</td>
<td>CAUTION SLOW</td>
<td>TRAFFIC</td>
<td>172.4</td>
</tr>
<tr>
<td></td>
<td>AHEAD</td>
<td>CAUTION STOPPED TRAFFIC</td>
<td></td>
<td>Sensor 1 (0.1mi b4 Taper) TRUE 176.8 4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X MILES AHEAD</td>
<td></td>
<td>Sensor 2 (0.5mi b4 Taper) TRUE 176.4 4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X MILES AHEAD</td>
<td></td>
<td>Sensor 3 (1.5mi b4 Taper) TRUE 176.4 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X MILES AHEAD</td>
<td></td>
<td>Sensor 4 (2.5mi b4 Taper) TRUE 174.4 2.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCMS</th>
<th>I-81</th>
<th>NB</th>
<th>173.6</th>
<th>(173.55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCMS 2 (3.35mi b4 Taper)</td>
<td>DEFAULT</td>
<td>SLOW</td>
<td>STOP</td>
<td>Queue warning Sensors (Closest non Fr)</td>
</tr>
<tr>
<td></td>
<td>WORKZONE</td>
<td>CAUTION SLOW</td>
<td>TRAFFIC</td>
<td>173.5</td>
</tr>
<tr>
<td></td>
<td>AHEAD</td>
<td>CAUTION STOPPED TRAFFIC</td>
<td></td>
<td>Sensor 1 (0.1mi b4 Taper) TRUE 176.8 3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X MILES AHEAD</td>
<td></td>
<td>Sensor 2 (0.5mi b4 Taper) TRUE 176.4 2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X MILES AHEAD</td>
<td></td>
<td>Sensor 3 (1.5mi b4 Taper) TRUE 175.4 1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X MILES AHEAD</td>
<td></td>
<td>Sensor 4 (2.5mi b4 Taper) TRUE 174.4 0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOPPLER</th>
<th>I-81</th>
<th>NB</th>
<th>174.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor 4 (2.5mi b4 Taper)</td>
<td>< 45 MPH</td>
<td>< 25 MPH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCMS</th>
<th>I-81</th>
<th>NB</th>
<th>174.8</th>
<th>(174.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCMS 1 (2.1mi b4 Taper)</td>
<td>DEFAULT</td>
<td>SLOW</td>
<td>STOP</td>
<td>Queue warning Sensors (Closest non Fr)</td>
</tr>
<tr>
<td></td>
<td>WORKZONE</td>
<td>CAUTION SLOW</td>
<td>TRAFFIC</td>
<td>174.8</td>
</tr>
<tr>
<td></td>
<td>AHEAD</td>
<td>CAUTION STOPPED TRAFFIC</td>
<td></td>
<td>Sensor 1 (0.1mi b4 Taper) TRUE 176.8 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X MILES AHEAD</td>
<td></td>
<td>Sensor 2 (0.5mi b4 Taper) TRUE 176.4 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X MILES AHEAD</td>
<td></td>
<td>Sensor 3 (1.5mi b4 Taper) TRUE 175.4 0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOPPLER</th>
<th>I-81</th>
<th>NB</th>
<th>175.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor 3 (1.5mi b4 Taper)</td>
<td>< 45 MPH</td>
<td>< 25 MPH</td>
<td></td>
</tr>
<tr>
<td>Sensor 2 (0.5mi b4 Taper)</td>
<td>< 45 MPH</td>
<td>< 25 MPH</td>
<td></td>
</tr>
<tr>
<td>Sensor 1 (0.1mi b4 Taper)</td>
<td>< 45 MPH</td>
<td>< 25 MPH</td>
<td></td>
</tr>
</tbody>
</table>
Speed Heatmap

2.5 mile queue

Queue buildup in the morning

June 29
Summary

- Tools exist to help predict crash effects of work zones
- Smart work zones have proven to be effective on long-term construction projects
- Currently testing options for paving operations
Questions?

Mike Fontaine, P.E., Ph.D.
Associate Director
Michael.Fontaine@VDOT.Virginia.Gov
434-293-1980